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Overall Motivation

Tropical Geometry is an emerging field that enables certain algebraic geometric
problems to be turned into combinatorial problems.
Already it has had striking applications to a wide range of subjects: [1]

Enumerative geometry
Classical geometry
Intersection theory
Moduli spaces and compactifications
Mirror symmetry
Abelian varieties
Representation theory
Algebraic statistics and mathematical biology

among other fields.



Tropical Algebra Tropical Geometry Linear Spaces and Matroids References

1 Tropical Algebra
The Three Semirings
Tropical Linear Algebra

2 Tropical Geometry
Fields with Valuation
Method of Newton Polygons
Tropical Varieties
Fundamental Theorem
Structural Theorem

3 Linear Spaces and Matroids
Motivation
Tropical Ideals
Matroids

4 References



Tropical Algebra Tropical Geometry Linear Spaces and Matroids References

The Three Semirings Tropical Linear Algebra

Tropical Algebra



Tropical Algebra Tropical Geometry Linear Spaces and Matroids References

The Three Semirings Tropical Linear Algebra

The Three Semirings

The tropical semiring is one of three semirings:
1 The (min,+) semiring, which we will denote Tmin. Tmin is the set R ∪ {∞} with:

a⊞ b = min{a, b} 3 ⊞ 7 = 3
a⊠ b = a+ b 3 ⊠ 7 = 10
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The Three Semirings

The tropical semiring is one of three semirings:
1 The (min,+) semiring, which we will denote Tmin. Tmin is the set R ∪ {∞} with:

a⊞ b = min{a, b} 3 ⊞ 7 = 3
a⊠ b = a+ b 3 ⊠ 7 = 10

2 The (max,+) semiring, which we will denote Tmax. Tmax is the set R ∪ {−∞}
with:

a⊞ b = max{a, b} 3 ⊞ 7 = 7
a⊠ b = a+ b 3 ⊠ 7 = 10
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The Three Semirings

The tropical semiring is one of three semirings:
1 The (min,+) semiring, which we will denote Tmin. Tmin is the set R ∪ {∞} with:

a⊞ b = min{a, b} 3 ⊞ 7 = 3
a⊠ b = a+ b 3 ⊠ 7 = 10

2 The (max,+) semiring, which we will denote Tmax. Tmax is the set R ∪ {−∞}
with:

a⊞ b = max{a, b} 3 ⊞ 7 = 7
a⊠ b = a+ b 3 ⊠ 7 = 10

3 The (max, ∗) semiring, which we will denote T×. T× is the set R≥0 with:

a⊞ b = max{a, b} 3 ⊞ 7 = 7
a⊠ b = a ∗ b 3 ⊠ 7 = 21
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Isomorphisms of T

As semirings these are all isomorphic.
Tmin

∼= Tmax via the isomorphism:

x 7→ −x

Tmax
∼= T× via the isomorphism:

x 7→ ex
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Tropical Matrices and Applications

Tropical linear algebra has natural applications in combinatorial problems.
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The Three Semirings Tropical Linear Algebra

Tropical Matrices and Applications

Tropical linear algebra has natural applications in combinatorial problems.
If you have a weighted graph:
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Tropical Matrices and Applications

Tropical linear algebra has natural applications in combinatorial problems.
You can turn it into an adjacency matrix:

M =


0 5 ∞ ∞
1 0 1 2
∞ 3 0 ∞
∞ ∞ 4 0
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Tropical Matrices and Applications

M =


0 5 ∞ ∞
1 0 1 2
∞ 3 0 ∞
∞ ∞ 4 0



When viewed as a matrix with entries in Tmin, M has the property that the entry mij of
Mn is the length of the shortest path in n or fewer steps between nodes i and j
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Tropical Matrices and Applications

M =


0 5 ∞ ∞
1 0 1 2
∞ 3 0 ∞
∞ ∞ 4 0



As each pair of nodes i , j has a shortest path, we know that M∞ = Mk for some k
finite.
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Tropical Matrices and Applications

Another combinatorial application of tropical matrices is in solving the Assignment
Problem
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Tropical Matrices and Applications

Another combinatorial application of tropical matrices is in solving the Assignment
Problem

Definition
Given a set of agents A and tasks T , with cost for agent a to do task t as c(a, t). If
one must do as many tasks as possible, and at most one agent can do each task, and
each agent can do at most one task, what is the minimal possible cost?
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The Three Semirings Tropical Linear Algebra

Tropical Matrices and Applications

Another combinatorial application of tropical matrices is in solving the Assignment
Problem

Definition
Given a set of agents A and tasks T , with cost for agent a to do task t as c(a, t). If
one must do as many tasks as possible, and at most one agent can do each task, and
each agent can do at most one task, what is the minimal possible cost?

This is an important problem in computer science, as most scheduling problems can be
reduced to an instance of the assignment problem.
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Tropical Matrices and Applications

Definition
Given a set of agents A and tasks T , with cost for agent a to do task t as c(a, t). If
one must do as many tasks as possible, and at most one agent can do each task, and
each agent can do at most one task, what is the minimal possible cost?

If we create a tropical matrix M with a number of rows indexed by A and columns
indexed by T , and entries mij = c(i , j) then the Tropical Permanent is the solution to
the assignment problem.

perm(M) =
∑

σ∈S|T |

|A|∏
i=1

mi ,σ(i)

Where all operations are viewed as operations in Tmin
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Fields with Valuation

The general setting for Tropical Geometry is in the study of a Field with Valuation
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Fields with Valuation

The general setting for Tropical Geometry is in the study of a Field with Valuation
Let K be a field and K× = K \ {0} its multiplicative group.

Definition
A valuation on K is a function:

val : K → R ∪ {∞}

Such that:
1 val(a) = ∞ if and only if a = 0
2 val(ab) = val(a) + val(b)

3 val(a+ b) ≥ min{val(a), val(b)}
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Fields with Valuation

Definition
A valuation on K is a function:

val : K → R ∪ {∞}

Such that:
1 val(a) = ∞ if and only if a = 0
2 val(ab) = val(a) + val(b)

3 val(a+ b) ≥ min{val(a), val(b)}

This looks an awful lot like a semiring homomorphism K → Tmin, we would just need
to strengthen condition (3) to be equality.
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Fields with Valuation

We can’t always strengthen condition (3), however a standard result in the theory of
valuations is the following:

Theorem
If val(a) ̸= val(b) then val(a+ b) = min{val(a), val(b)}
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Fields with Valuation

Theorem
If val(a) ̸= val(b) then val(a+ b) = min{val(a), val(b)}

Corollary

The injective valuations K → R ∪ {∞} are exactly the injective semiring
homomorphisms K → Tmin
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Fields with Valuation

The best example to keep in mind is Q with the p-adic valuation for any prime p:

valp
(
pk

a

b

)
= k

Where p ̸ |a, p ̸ |b
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Fields with Valuation

Given a polynomial in a field with valuation (K , val)

f =
∑

aux
u ∈ K [x1, ..., xn]

We can define the tropicalization of f as:

trop(f ) = min(val(au) + u1x1 + ...unxn) ∈ Tmin[x1, ..., xn]
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Method of Newton Polygons

One of the earliest examples of Tropical Geometry comes from a 1676 letter from Isaac
Newton to Henry Oldenburg
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Method of Newton Polygons

Let K be a field with valuation and let:

f (x) = anx
n + ...+ a1x + a0 ∈ K [x ]

With ana0 ̸= 0
We define the Newton Polygon to be the lower convex hull of the set of points:

{(i , val(ai ))}
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Method of Newton Polygons

Let K be a field with valuation and let:

f (x) = anx
n + ...+ a1x + a0 ∈ K [x ]

With ana0 ̸= 0
We define the Newton Polygon to be the lower convex hull of the set of points:

{(i , val(ai ))}

Theorem
Let µ1, ..., µr be the slopes of the line sements of the Newton polygon of f (x) with
λ1, ..., λr the corresponding lengths of the projections of those lines onto the x-axis.
Then for each 1 ≤ i ≤ r , f (x) has exactly λi roots in its splitting field with valuation
−µi
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Method of Newton Polygons

Consider the polynomial

(x + 4)(x + 8)(x + 5) = x3 + 17x2 + 92x + 160

Under the 2-adic valuation
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Method of Newton Polygons

Consider the polynomial

(x + 4)(x + 8)(x + 5) = x3 + 17x2 + 92x + 160

Under the 2-adic valuation
The Newton Polygon is the lower convex hull of the set:

{(0, 5), (1, 2), (2, 0), (3, 0)}
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Method of Newton Polygons

(x + 4)(x + 8)(x + 5) = x3 + 17x2 + 92x + 160

{(0, 5), (1, 2), (2, 0), (3, 0)}
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Method of Newton Polygons

(x + 4)(x + 8)(x + 5) = x3 + 17x2 + 92x + 160

{(0, 5), (1, 2), (2, 0), (3, 0)}
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Method of Newton Polygons

(x + 4)(x + 8)(x + 5) = x3 + 17x2 + 92x + 160

So we have slopes −3,−2, 0 with corresponding lengths 1, 1, 1 – so we have a single
root of valuation 3, a single root of valuation 2, and a single root of valuation 0.
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Tropical Varieties

Let f ∈ K [x±1
1 , ..., x±1

n ]
The classical variety is a hypersurface in the algebraic torus T n = (K̄×)n over the
algebraic closure of K :

V (f ) = {y ∈ T n : f (y) = 0}
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Tropical Varieties

Let f ∈ K [x±1
1 , ..., x±1

n ]
The classical variety is a hypersurface in the algebraic torus T n over the algebraic
closure of K :

V (f ) = {y ∈ T n : f (y) = 0}

Definition
The tropical hypersurface trop(V (f )) is the set:

{w ∈ Rn : the minimum in trop(f )(w) is attained at least twice}
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Tropical Varieties

Let f ∈ K [x±1
1 , ..., x±1

n ]
The classical variety is a hypersurface in the algebraic torus T n over the algebraic
closure of K :

V (f ) = {y ∈ T n : f (y) = 0}

Definition
The tropical hypersurface trop(V (f )) is the set:

{w ∈ Rn : the minimum in trop(f )(w) is attained at least twice}

When F is a tropical polynomial we write V (F ) for the set:

{w ∈ Rn : the minimum in F (w) is attained at least twice}
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Tropical Varieties

Let f ∈ K [x±1
1 , ..., x±1

n ]
The classical variety is a hypersurface in the algebraic torus T n over the algebraic
closure of K :

V (f ) = {y ∈ T n : f (y) = 0}

Definition
The tropical hypersurface trop(V (f )) is the set:

{w ∈ Rn : the minimum in trop(f )(w) is attained at least twice}

When F is a tropical polynomial we write V (F ) for the set:

{w ∈ Rn : the minimum in F (w) is attained at least twice}
This gives us:

trop(V (f )) = V (trop(f ))
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Tropical Varieties

Let I ⊆ K [x±1
1 , ..., x±1

n ] be an ideal and let X = V (I )

Definition
The tropicalization of X is:

trop(X ) =
⋂
f ∈I

trop(V (f )) ⊆ Rn
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Tropical Varieties

Let I ⊆ K [x±1
1 , ..., x±1

n ] be an ideal and let X = V (I )

Definition
The tropicalization of X is:

trop(X ) =
⋂
f ∈I

trop(V (f )) ⊆ Rn

We call a finite generating set T ⊂ I a tropical basis of I if:

trop(V (I )) =
⋂
f ∈T

trop(V (f ))

It can be shown that every Laurent ideal has a finite tropical basis [2][Theorem 2.6.6]
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Fundamental Theorem of Tropical Algebraic Geometry

Theorem
Let K be an algebraically closed field with nontrivial valuation. Let I be an ideal in
K [x±1

1 , ..., x±1
n ] and let X = V (I ) be its variety in the algebraic torus T n ∼= (K×)

n.
The following subsets of Rn coincide:

1 The tropical variety trop(X )

2 The set of all vectors w ∈ Rn with inw(I ) ̸= ⟨1⟩
3 The closure of the set of coordinatewise valuations of points in X :

val(X ) = {(val(y1), ..., val(yn) : (y1, ..., yn) ∈ X}

Furthermore if X is irreducible and w is any point in Γnval ∩ trop(X ) then the set
{y ∈ X : val(y) = w} is Zariski dense in X .
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Structure Theorem for Tropical Varieties

Theorem
Let X be an irreducible d-dimensional subvariety of T n. Then trop(X ) is the support of
a balanced weighted Γval-rational polyhedral complex pure of dimension d . Moreover
that polyhedral complex is connected through codimension 1.
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Structure Theorem for Tropical Varieties

Theorem
Let X be an irreducible d-dimensional subvariety of T n. Then trop(X ) is the support of
a balanced weighted Γval-rational polyhedral complex pure of dimension d . Moreover
that polyhedral complex is connected through codimension 1.

Pure of dimension d : All maximal cells have dimension d

Balanced, weighted: For each d − 1 dimensional cell, the sum of the weighted
vectors to the first lattice point generator of each d dimensional cell containing it
are zero. The weights for our tropical variety are the lattice lengths of the dual
polyhedral complex. (Tropical varieties are dual to regular subdivisions of Newton
polytopes)
Connected through codimension 1: For any pair of d dimensional (maximal)
cells you can find a path connecting them through d − 1 dimensional cells.
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Structure Theorem for Tropical Varieties

Theorem
Let X be an irreducible d-dimensional subvariety of T n. Then trop(X ) is the support of
a balanced weighted Γval-rational polyhedral complex pure of dimension d . Moreover
that polyhedral complex is connected through codimension 1.

This theorem has a partial converse. If d = n − 1 then any balanced weighted
Γval-rational polyhedral complex pure of dimension d which is connected through
codimension 1, Σ, then there is some variety X ⊂ T n such that Σ = trop(X ).
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No Subtraction Adds Problems

This is all well and good if we are starting with a field, and trying to answer problems
about its geometry, but what if we want to look at purely tropical objects?
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No Subtraction Adds Problems

Reminder, given an ideal K [x1, ..., xn] ⊃ I = ⟨f1, ..., fm⟩, the associated tropical variety
is: ⋂

f ∈I
V (trop(f ))

We can also phrase this as the V (trop(I )), where trop(I ) is the ideal in T[x1, ..., xn]
with:

trop(I ) = ⟨trop(f ) : f ∈ I ⟩
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No Subtraction Adds Problems

Reminder, given an ideal K [x1, ..., xn] ⊃ I = ⟨f1, ..., fm⟩, the associated tropical variety
is: ⋂

f ∈I
V (trop(f ))

We can also phrase this as the V (trop(I )), where trop(I ) is the ideal in T[x1, ..., xn]
with:

trop(I ) = ⟨trop(f ) : f ∈ I ⟩

What happens if we only look at the generators of I?
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No Subtraction Adds Problems

Reminder, given an ideal K [x1, ..., xn] ⊃ I = ⟨f1, ..., fm⟩, the associated tropical variety
is: ⋂

f ∈I
V (trop(f ))

We can also phrase this as the V (trop(I )), where trop(I ) is the ideal in T[x1, ..., xn]
with:

trop(I ) = ⟨trop(f ) : f ∈ I ⟩

What happens if we only look at the generators of I?
The prevariety associated to I is:

m⋂
1

V (trop(fi )) ⊃ V (trop(I ))
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No Subtraction Adds Problems

The prevariety associated to I is:

m⋂
1

V (trop(fi )) ⊃ V (trop(I ))

The fi generate a tropical ideal:

⟨trop(fi )⟩ ⊂ trop(I )

This is almost always a strict inclusion
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Motivation Tropical Ideals Matroids

No Subtraction Adds Problems

The prevariety associated to I is:
m⋂
1

V (trop(fi )) ⊃ V (trop(I ))

The fi generate a tropical ideal:

⟨trop(fi )⟩ ⊂ trop(I )

This is almost always a strict inclusion
Consider: trop(⟨x + y , x − y⟩). This contains x , however if we look at the ideal in the
tropical semiring generated by the generators we get:

⟨x ⊕ y⟩

Which does not contain x .
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No Subtraction Adds Problems

Because of this, arbitrary ideals of the tropical semiring do not follow the fundamental
theorem of tropical geometry. Their varieties can be arbitrary, non-convex structures.
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No Subtraction Adds Problems

Because of this, arbitrary ideals of the tropical semiring do not follow the fundamental
theorem of tropical geometry. Their varieties can be arbitrary, non-convex structures.
If we want to take a “tropical first" approach to tropical geometry, we need an object
that behaves like the tropicalization of an ideal even if it is not.
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Tropical Linear Spaces

Given an ideal I ⊂ K [x1, ..., xn], I has a natural graded vector space structure.
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Motivation Tropical Ideals Matroids

Tropical Linear Spaces

Given an ideal I ⊂ K [x1, ..., xn], I has a natural graded vector space structure. For each
d ∈ N,

Id = {f ∈ I : deg(f ) = d}

is a K -vector space — i.e. a linear space
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Tropical Linear Spaces

Given an ideal I ⊂ K [x1, ..., xn], I has a natural graded vector space structure. For each
d ∈ N,

Id = {f ∈ I : deg(f ) = d}

is a K -vector space — i.e. a linear space
Linearity gives us a concept of elimination or subtraction. So to solve the problems that
the lack of subtraction gives, we will just require each degree d component of our
tropical ideal to behave like the tropicalization of a linear space.
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Tropical Linear Spaces

Definition
An ideal I ⊂ T[x1, ..., xn] is a tropical ideal if for each d ∈ N, Id is a tropical linear
space.

Tropical Ideals, even when they are not the tropicalizations of an ideal, follow both the
structure theorem and the fundamental theorem.
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Motivation Tropical Ideals Matroids

Tropical Linear Spaces

Definition
An ideal I ⊂ T[x1, ..., xn] is a tropical ideal if for each d ∈ N, Id is a tropical linear
space.

Tropical Ideals, even when they are not the tropicalizations of an ideal, follow both the
structure theorem and the fundamental theorem.
A tropical linear space is a tropical ideal whose structure is given by a matroid.
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Matroids

A Matroid is a generalization of the idea of linear independence and dependence.
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Matroids

A Matroid is a generalization of the idea of linear independence and dependence.
There are many notions of dependence that matroids capture:

1 If I have a finite set of vectors V in a vector space, then for any subset K ⊂ V , K
is dependent if there exists coefficients ak such that

∑
k∈K akk = 0
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Matroids

A Matroid is a generalization of the idea of linear independence and dependence.
There are many notions of dependence that matroids capture:

1 If I have a finite set of vectors V in a vector space, then for any subset K ⊂ V , K
is dependent if there exists coefficients ak such that

∑
k∈K akk = 0

2 If I have a graph G = (V ,E ) you can say that a subset S ⊂ E is dependent if it
contains a cycle
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Matroids

A Matroid is a generalization of the idea of linear independence and dependence.
There are many notions of dependence that matroids capture:

1 If I have a finite set of vectors V in a vector space, then for any subset K ⊂ V , K
is dependent if there exists coefficients ak such that

∑
k∈K akk = 0

2 If I have a graph G = (V ,E ) you can say that a subset S ⊂ E is dependent if it
contains a cycle

3 If E is the algebraic closure of F , and V is a finite subset of E , then V is
dependent if there is a strict subset of V , S such that F (K ) = F (S).
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Matroids

A Matroid is a generalization of the idea of linear independence and dependence.
There are many notions of dependence that matroids capture:

1 If I have a finite set of vectors V in a vector space, then for any subset K ⊂ V , K
is dependent if there exists coefficients ak such that

∑
k∈K akk = 0

2 If I have a graph G = (V ,E ) you can say that a subset S ⊂ E is dependent if it
contains a cycle

3 If E is the algebraic closure of F , and V is a finite subset of E , then V is
dependent if there is a strict subset of V , S such that F (K ) = F (S).

In each of these examples dependency captures some sort of redundancy or elimination
that is happening.
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Matroids

Let’s blitz through some definitions of matroids.
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Matroids

Let’s blitz through some definitions of matroids.

Definition (Independent Set)

A finite matroid M is a pair (E , I ) where E is a finite set called the ground set and
I ⊂ 2E is a family of subsets of E called the independent sets which follow the
following axioms:

1 ∅ ∈ I

2 Every subset of an independent set is independent.
3 Independent Set Exchange Axiom: If A,B are two independent sets and

|A| > |B| then there is some a ∈ A \ B such that B ∪ {a} ∈ I .

The first two axioms give the definition of an independence system or an abstract
simplicial complex, the third defines the matroid.
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Matroids

Instead of the full independence system, we only need the maximal independent sets to
describe the matroid, we call those bases:

Definition (Bases)

A finite matroid M is a finite set E and a nonempty collection of subsets of E , B
called the bases of M such that:

1 No proper subset of an element of B is in B
2 Basis Exchange Axiom: If A,B are two distinct members of B and a ∈ A \ B

then there exists b ∈ B \ A such that (A \ {a}) ∪ {b} ∈ B

The second axiom is the same as the basis exchange theorems in Linear Algebra.
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Matroids

Instead of the full independence system, we only need the minimal dependent sets to
describe the matroid, we call those circuits:

Definition (Circuits)

A finite matroid M is a finite set E and a nonempty collection of subsets of E , C called
the circuits of M such that:

1 No proper subset of an element of C is in C
2 Circuit Exchange Axiom: If A,B are two distinct members of C and c ∈ A ∩ B

then (A ∪ B) \ {c} contains some circuit.
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Matroids

Each of those definitions follows pretty closely from one another, but not all definitions
of matroids even seem to have anything to do with an independence system.
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Matroids

Each of those definitions follows pretty closely from one another, but not all definitions
of matroids even seem to have anything to do with an independence system.

Definition (Rank)

A finite matroid M is a finite set E with a rank function r : 2E → Z+ such that:
1 Rank is at most the size of your set: r(A) ≤ |A|
2 The rank function is submodular: r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B)

3 Rank is monotonic: For any A ⊂ E and x ∈ E , r(A) ≤ r(A ∪ {x}) ≤ r(A) + 1

Rank can be thought of as the dimension of a substructure generated by the given
subset.
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Matroids

The closure of a set A ⊂ E is the set:

cl(A) = {x ∈ E : r(A) = r(A ∪ {x})

Knowing these closures alone is enough to recreate the matroid. A set A such that
cl(A) = A is called a flat of a matroid.
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Matroids

Definition (Lattice of Flats)

A finite matroid M is a finite set E and a collection of subsets of E , F ⊂ 2E called the
flats of M such that:

1 E is itself a flat.
2 Flats are closed under intersection: If A,B ∈ F then A ∩ B ∈ F
3 The flats which cover A partition E \ A: If A is a flat, then each element of E \ A

is in precisely one of the flats T that cover A – a set T covers A if A ⊂ T and
there are no flats X such that A ⊂ X ⊂ T

The collection of flats forms a lattice under inclusion.
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Matroid Examples

Vector Spaces: Given a vector space V and a finite collection of vectors E ⊂ V we
get a matroid by:

S ⊂ E is independent if it is a linearly independent set
S ⊂ E is a basis if it forms a linear basis of span(E )
S ⊂ E is a circuit if the dimension of its span is |S | − 1
r(S) = dim(span(S))

S is a flat if there is no x ∈ E \ S such that x ∈ span(S)

Such matroids are called representable matroids. If that matroid structure can be
formed over any possible field it is called a regular matroid
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Matroid Examples

Graphs: Given a (multi)graph G = (V ,E ):
S ⊂ E is independent if it does not contain a cycle
S ⊂ E is a basis if it forms a minimal spanning forest of G
S ⊂ E is a circuit if it is a simple cycle
r(S) = n − c where n is the number of vertices in the subgraph determined by S
and c is the number of connected components.
The flats of G are partitions of G into connected components

Such matroids are called graphic matroids.
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Matroid Examples

Field Extensions: Let K be a field extension of F and let E be a finite subset of K :
S ⊂ E is independent if the extension field F (S) has transcendence degree over F
equal to |S |
r(S) is the transcendence degree of F (S) over S

Such matroids are called algebraic matroids.
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Matroid Examples

There are a hierarchy of matroids.
Over fields of characteristic zero algebraic matroids are representable matroids, but in
general they form a larger class.

graphic ⊂ regular ⊂ representable ⊂ algebraic ⊂ matroids

With every single one of those inclusions being strict.
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Why are matroids cool in general?

Have you ever wondered when greedy algorithms are optimal, versus when they are just
approximations?
The answer is Matroids!



Tropical Algebra Tropical Geometry Linear Spaces and Matroids References

Motivation Tropical Ideals Matroids

Why are matroids cool in general?

Have you ever wondered when greedy algorithms are optimal, versus when they are just
approximations?
The answer is Matroids!

Theorem
A greedy algorithm is optimal if and only if it can be formulated as an algorithm over a
matroid in the following way:
Given a matroid M = (E , I ) with a cost function c : E → R+, the greedy algorithm
iteratively adds the cheapest element of E so long as it remains independent.
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Why are matroids cool in general?

Have you ever wondered when greedy algorithms are optimal, versus when they are just
approximations?
The answer is Matroids!

Theorem
A greedy algorithm is optimal if and only if it can be formulated as an algorithm over a
matroid in the following way:
Given a matroid M = (E , I ) with a cost function c : E → R+, the greedy algorithm
iteratively adds the cheapest element of E so long as it remains independent.

In the same way that path algebras are the “algebraic representation" of the minimal
cost problem, matroids are the algebraic representation of greedy algorithms.
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Thank you for attending!

Questions?
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