William Bernardoni

wrb37@case.edu • https://wrbernardoni.github.io/

EDUCATION	Case Western Reserve University	Sep 2020 – Ongoing	
	Ph.D. Candidate in Mathematics Johns Hopkins University Cumulative GPA: 3.57 / 4.0	Aug 2016 – Apr 2020	
	B.S. in Computer Science and Mathematics with honors in Computer Science Computer Science GPA: 3.84 / 4.0	ce	
	College of Dupage - Early Admissions Student Cumulative GPA: 4.00 / 4.00	Aug 2015 – Jan 2016	
	Batavia High School Cumulative GPA: 4.375 / 4.375	Aug 2012 – May 2016	
INTERNSHIPS AND WORK	Case Western Reserve University Instructor of Record, Graduate Student • Taught undergraduate classes at Case Western Reserve in addition to research work.	2021 – Present	
	 NASA SIP Intern at SCaN Summer 2022, 2023 Developed a mathematical framework to study and develop algorithms for parameterized routing problems, particularly with applications towards space networking. Developed a semiring which encapsulates the behavior of satellite networking Used that mathematical model to determine the maximum data throughput in proposed satellite network architectures, as well as the minimal storage requirements in the network necessary to attain that throughput. 		
	Johns Hopkins University Computer Science Course Assistant • Graded and held review sessions for the undergraduate second year class on Computa	2018 – 2020 tion Theory.	
	 Dynamic Systems and Controls Lab at Johns Hopkins University Computer Science Intern Designed and created controls system for ROVs used in the lab using C++ in Robot C Created simulations of robots in order to aid testing designs of the robots and their co 	2018 DS. ntrol systems.	
	 Fusiform (Baltimore Technology Startup) Backend Server Engineer Created and maintained several distributed serverlettes using Nodejs; routing enc databases, and retrieving and formatting data on request for our client modules in real 	2016 – 2017 rypted user data to our secure time.	
	 Illinois Institute of Technology Robotics Lab Summer Intern Aided in creating an experiment to quantify the effect on multirotor stability at lower h multirotor crafts to remain stable in confined spaces. 	2015 neights, to create model to allow	
SKILLS	Programming Languages: C++ (Expert in C++11), Javascript (Expert), Java (Proficient), Python (Proficient)		
	Computer Programming Design Paradigms: Object Oriented, Embedded Systems, Event Driven, Parallel, and Procedural		
	Proficiency in: IPC, multithreaded programming, distributed server design, 3-D printing, basic 3-D m soldering, basic MIG welding.	odelling and design, electronic	
	Environments Worked In: Windows and Linux environments, ROS, as well as NI cRIO, Raspberry Pi, and Arduino	Controllers.	
NOTABLE PROJECTS	Network Analysis of Delay Tolerant Networks via Semiring Geometry	2023	

	Created computable semirings to encapsulate the behavior of satellite networks as well as a novel algebraic model of de tolerant networking. Using these semirings and geometric methods I developed computational methods to determine minimal amount of storage needed in a satellite network to attain desired levels of throughput. These methods we demonstrated in internal presentations at NASA Glenn, and will be presented at the IEEE AeroConf in 2024.	lay the ere
	Generalized Parameter Space Decompositions for Routing Problems 20 Created an approach using a generalization of Tropical Geometric methods which allows for the parameterization of routing problem and decomposition into optimal substructures, allowing for methods such as Joswig's Algorithm to generalized to complicated network structures, such as satellite networks.)22 <i>any</i>) be
	Tree Search Acceleration for Games of Imperfect Information 20 Worked on a novel application of CountSketch and MinHash to eliminating redundant nodes during Alpha-Beta or o deterministic tree searches. A full write-up can be found on my webpage here https://cplusgears.com)19 ther
	JHUAPL Reconnaissance Blind Chess Competition Bot 20 Competed in the JHUAPL Reconnaissance Blind Chess Competition, creating a bot to play a version of chess v imperfect information. The bot finished fifth out of 22 in the final tournament after finishing first in the first test tournam and second in the second. The bot's performance can be seen on the competition's page https://rbc.jhuapl.edu under name wbernar5. A detailed writeup of the methods used and the code is available on my webpage.)19 vith ient the
	Equi – Parallel Programming Language 20 Created an interpreted programming language with inbuilt parallelism, with the goal of making distributed scient computing as easy as a single function call. Details will be available on my webpage www.cplusgears.com, and the is available on the open source github at: https://github.com/wrbernardoni/Equi)19 tific ode
	Nonlinear Word Embedding Transformation Learning with Elastic Maps 20 Created a nonlinear mapping algorithm for use on mapping word embeddings between languages and attained a lowe error than currently used methods. Paper is available on my webpage www.cplusgears.com 20)18 r l ₂
TEACHING	Case Western Reserve:Spring 2Math 125 - Math and Calculus Applications for Life, Managerial, and Social Sciences ISpring 2Tropical Geometry Seminar - Hosted and lectured for a weekly graduate seminar on Tropical GeometryFall 2Math 224 - Elementary Differential EquationsFall 2	023 022
	Math 126 - Math and Calculus Applications for Life, Managerial, and Social Sciences IIFall 2Math 120 - Elementary Functions and Analytic GeometrySummer 2	021 021
PAPERS	Semirings and Space Networking Applications W. Bernardoni, Applications of generalized universal valuations, 2023 W. Bernardoni, R. Cardona, J. Cleveland, J. Curry, R. Green, B. Heller, A. Hylton, T. Lam, and R. Kassouf-Short, Algeb and geometric models for space networking, 2023	raic
TALKS	Developments in Modern Mathematics , University of Göttingen September 20 "Applications of Generalized Universal Valuations")23
	Talk given on original work in generalizing valuation theory to a non-commutative setting. NASA, Glenn Research Center July-August 20 "Network Storage Analysis via Semiring Geometry")23
	Talk given on original work on deriving the minimal amount of storage needed in a satellite network to attain maximum throughput using algebraic and geometric methods. <i>"Algebraic Path Problem, Semirings, and Contact Graph Routing"</i>	the
	Talk given on original work on developing a semiring which encapsulates Contact Graph Routing, and using i derive routing plans and storage requirements for a satellite network.	t to
	14th Ukraine Algebra Conference , Sumy State Pedagogical University (Virtual) July 20 "Applications of Generalized Universal Valuations" Talk given on original work on generalizing valuations)23
	objects for non-commutative geometric structures.	ung
	"The Semiring Geometry of Routing Problems" Talk given on original work in parameterized routing)22
	NASA, Glenn Research Center August 20 "Decomposition in Space: How dynamic satellite configurations affect network optimality" Talk given on original work in parameterized routing)22
	"Tropical Geometry, Matroids, and recent advances in Tropical Ideals" Survey lecture on various new developments in the field of tropical geometry which could be applicable to the prob of mathematically modelling satellite networks.	lem
	Cleveland State University January 20)22
	Week-long refresher course on Discrete Math for incoming masters students August 20 Case Western Reserve University August 20 Organized week-long lecture series for incoming PhD students Lectured on Galois Theory and Axiom of Choice)21

Reconnaissance Blind Chess Workshop, NEURIPS Invited by JHUAPL to present in competition workshop on methods used in algorithm development for reconnaissance blind chess competition.

RELEVANT	Case Western Reserve:
COURSEWORK	Mathematics
	Real Analysis I + II, Abstract Algebra I + II, Topology, Algebraic Topology, Convexity and Optimization, Dynamical
	Systems for Biology, Differentiable Manifolds
	Johns Hopkins:
	Mathematics – Theory
	Representation Theory, Honors Real Analysis I and II, Honors Complex Analysis, Honors Abstract Algebra I and II, Topology, Discrete Mathematics
	Mathematics – Computation
	Mathematical Game Theory, Probability and Statistics, Linear Algebra, Calculus 3, Differential Equations and Applications
	Computer Science
	Algorithmic Game Theory, Randomized and Big Data Algorithms, Object Oriented Software Engineering, Parallel Programming, Machine Translation, Algorithms, Automata and Computation Theory, Information Retrieval and Web Crawling Agents
INTERESTS	Semiring Geometry, Tropical Geometry, Representation Theory, Algorithmic Game Theory
REFERENCES	Available upon request